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Abstract-This paper focuses on the instability phenomena of an elastic rectangular plate under
pure bending which emerge after the occurrence of the primary buckling. The mechanisms of
this instability behavior are investigated phenomenally throughout the analysis of load-deflection
simulations. The relationships between the characteristics of this instability and the boundary
conditions of a plate are also discussed. The effect of initial deflections on the post-buckling paths
and secondary instability phenomena is examined from the viewpoint of imperfection-sensitivity.
Finally, it is presented that a plate also shows the similar instability phenomena when subjected to
unequal bending and shear.

1. INTRODUCTION

It is well known that the initial or primary buckling of an elastic flat plate is generally a
stable symmetric bifurcation from the initially undeflected equilibrium state. Such an elastic
plate retains the sufficient rigidity even beyond the primary buckling point and shows stable
and monotonical behavior in the post-buckling range.

As for the large deflection problems of the elastic plate, Levy (1942) solved von
Karman's fundamental equations in the case of a simply-supported square plate under edge
compression combined with the lateral pressure. Numerical results for the large deflection
problems are compared with some experimental load-deflection curves and the effective
width formulae available. Coan (1951) solved Marguerre's fundamental equations with the
effect of small initial curvature of a simply-supported plate to improve Levy's solution. It
was assumed that the supporting edges are stress-free and the loading edges are uniformly
displaced as the boundary conditions. Yamaki (1959) also solved Marguerre's fundamental
equations under eight different boundary conditions which combine two kinds of loading
conditions and four kinds of supporting conditions. The solutions by Levy and Coan can
be obtained as special cases from these results.

From these studies, it has also been well known that the post-buckling behavior of a
plate becomes complicated owing to the two-dimensional property which yields the highly
mixed harmonic patterns in the deformed configuration. Therefore, it is not surprising to
have further instability phenomena of the elastic plates even after the primary buckling
load.

In some experimental and theoretical studies on the post-buckling behaviors ofa
rectangular plate subjected to the in-plane uniaxial compression [e.g. Bauer and Reiss
(1965), Supple (1967, 1968, 1970), Chilver (1967), Sharman and Humpherson (1968), and
Demura and Byon (1977, 1978)], it has been revealed that a plate deformed in a primary
buckling mode may snap abruptly to another configuration with a different pattern of
deflection. This phenomenon has been called the secondary instability or the secondary
buckling of plates.

Supple (1970) investigated this sudden change of the wave-form of simply-supported
rectangular plates under uniaxial compression using the 2 DOF characterized by the
buckling modes. The effects of the boundary conditions at the unloaded edge and imper
fections are also examined by considering the uncoupled and coupled buckling modes.
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Nakamura and Uetani (1979) improved the theoretical investigation of the secondary
buckling and post-secondary behaviors by the multi-term coupling effect of buckling modes.
Unstable and stable symmetric bifurcation points on the secondary branching paths are
observed, and the snap-through motions involving an abrupt change of wave-form are
found to be possible.

Recently, Maaskant and Roorda (1992) studied the post-buckling behavior ofa simply
supported plate under combined loading ofbiaxial compression. This interaction ofloadings
leads to the mode jumping phenomenon associated with the secondary bifurcation, and the
characteristics of mode coupling in the buckling modes are described in several loading
conditions.

A similar secondary instability phenomenon has been observed by Hasegawa et al.
(1987) on the column with one end fixed and the other hinged, the so-called propped
cantilever column. Furthermore, Levy et al. (1945) and Konishi et al. (1966) investigated
the post-buckling behavior of simply-supported webs under pure shear loading to simulate
the formation of a tension field. The elastic post-buckling behavior of a rectangular plate
under combined actions of compression and bending was studied by Usami (1982). An
energy method is applied to solve Marguerre's equation, and this result is utilized to derive
the effective width formulae.

However, none of them pointed out the existence of instability in the post-buckling
behavior of elastic plates under bending or shear. Fujii and Ohmura (1989) reported that
in the elastic FEM analysis of a panel of curved girders, some numerically unstable points
exist at which a large number of iterations are required to obtain a converged answer. We
believe that this is also the secondary instability phenomenon, but this kind of unstable
mechanism of plates has not been focused on up to now. The objectives of this study are
to trace this instability phenomenon in the post-buckling range and to reveal its mechanism
and characteristics. An analytical approach is employed to simulate the load-deflection
behavior.

As we are concerned with the behavior of a rectangular plate in the plate girder
structures, a simply-supported plate and another one with two opposite sides clamped and
the other two sides simply-supported are examined. In the latter model, the clamped sides
express the effect of the flange plates and the simply-supported edges correspond to the
vertical stiffeners of a web plate. Shearing forces on four sides and bending moments only
on the simply-supported sides are applied, where both the equal and unequal bending
moments are considered.

Moreover, since the effect of initial deflections on the equilibrium paths is the one we
are interested in, we also examine the relationships between the initial imperfection and the
instability phenomenon from a viewpoint of imperfection-sensitivity. These relations are
examined by varying both the modes and magnitudes of the imperfections. Finally, we
present a rectangular plate which also shows the instability phenomena due to the effect of
combined loading when subjected to unequal bending and shear.

We here employ a classical but analytical approach to trace the equilibrium paths in
the load-deflection behavior of an elastic plate. Marguerre's fundamental equations for the
plate bending are solved by Galerkin's method. The advantages of this analytical method
over the FEM are the calculation efficiency such as saving of memory and CPU time, rapid
convergence of Newton-Raphson iterations even at the instability points, and easy handling
of loading and unloading control. FEM needs a huge number of discretized elements to
obtain sufficient accuracy for the similar analyses.

2. INSTABILITY OF A SIMPLY-SUPPORTED RECTANGULAR PLATE

2.1. Fundamental equation
Marguerre's equations for the plate bending with relatively large deflection are ex

pressed in terms of the out-of-plane deflection w(x, y), initial deflection wo(x, y) and the
in-plane stress function F(x, y) as
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where t and D == Et 3/12(1- v2
) are the plate thickness and the flexural rigidity of the plate,

respectively. E is Young's modulus and v is Poisson's ratio. In order to ensure the symmetric
order ofdifferentiation in the series expansion, eqn (1 b) is modified in some parts from that
of the well-known type.

The in-plane stress components O"Ax, y), O"y(x, y) and Lxy(X, y) are related to the Airy
stress function F(x, y) as

(2)

This stress function F(x, y) must be determined to satisfy the loading condition. We here
consider a problem in which the plate is subjected to pure shearing stress La and unequal
bending moments [see Kutzelnigg (1978) and Nakazawa et al. (1991)] M 1 and M 2 at both
sides as shown in Fig. 1(a). Then, the mechanical boundary conditions given by the stress
resultant forces can be expressed as

along x = 0, a,

M(x) = -tf O"AX,Y)(Y-~)dY,

M , = M(x = 0), M 2 = M(x = a),

f O"xdy=O,

(3a)

(3b)

O"y = 0, along y = 0, b,

along y = 0, b.

(3c)

(3d)

These boundary conditions of eqns (3a)-(3d) can be exactly satisfied if

l",e =-~ ...... I 'ta

x

0.35a.D.30b) rz;.
(3). .~

(O.650.0.30b)

o

vi vi
vi (0.35o,~.70bJ.<2) vi

CD (O.650.0.70bJb
I :0
I I- 1--._.-

I I
a

~ l~ x

(a) (b)

Fig. I. Geometry of a rectangular elastic plate: (a) a panel subjected to unequal end moments and
shearing force; (b) observation points of out-of-plane deflection.



2732 M. NAKAZAWA et al.

(4)

is chosen for the Airy stress function [see for example Timoshenko and Goodier (1970) or
Nakazawa et al. (1991)] which is a homogeneous solution ofeqn (lb).

The deflections can be expressed for the simply-supported condition of four edges as

00 00 (mnx) (nny)
Wo = t I I amn sin -- sin -b '

m=ln=1 a

00 00 (mnx) (nny )
W = t I I bmn sin - sin -b '

m= I n= I a

(5a)

(5b)

where amn ate the given quantities of the initial deflection, and bmn are the unknown
coefficients to be determined. m and n are the number of half harmonic waves in the x- and
y-directions, respectively.

The general expression of F(x, y) is obtained by summing a particular solution cor
responding to the right-hand side of eqn (1 b) using eqn (5), and the homogeneous solution
Fo(x, y) of eqn (4) as

00 00 (pnx) (2qny )F(x,y) = Fo(x,y)+Et
2
p~Oq~O 4Jpq cos ----;;- cos -b- . (6)

In this case, the mechanical boundary condition ofeqn (3c) must be relaxed to J~ CTydx = O.
If eqn (3c) must be strictly satisfied, it is necessary to introduce additional terms (Usami,
1982) to eqn (6), but this function is expressed by a Fourier series which converges very
slowly in the numerical calculation. Therefore, it is practically impossible to obtain the
sufficient accuracy for the exact boundary condition of eqn (3c). Hence, we employed the
relaxed one. Substituting eqns (5) and (6) into eqn (lb), we obtain the expression of 4Jpq in
terms of amn and bmn as

{

p = m+i
. or

. p = Im-il

and q = (n+j)/2

and q = In-j1/2 {

p = Im-il
+: or

p=m+i

and q = (n+j)/2,

and q = In-jI/2,
(7)

where p and q are positive integers, and (X is the aspect ratio of a panel, i.e. (X == alb. The
final equation to be solved with eqn (7) can be obtained by direct substitution of eqns (5)
and (6) into eqn (Ia), but it becomes so complicated that Galerkin's method is applied to
eqn (1a) in the form as

[a [b {V4w- ~ [0
2
F 02(W+ WO) + 0

2
F 02(W+ WO) _ 2 02F 02(W+ WO)]}

Jo Jo D Oy2 OX2 OX2 Oy2 OX oy OX oy

o sin (r:x) sin Cr)dXdY =0, r,s= 1,2,3, .... (8)

By substituting eqns (5) and (6) into eqn (8) and integrating it, we obtain the following
fundamental equations as a final form :
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I I mnrs 3 2 4 00 00

+8aA3LL(amn+bmn)(2_ 2)(2_ 2)--4(I-v)1t L L(amn+bmn )
m n r m s n m= 1 n= 1

• ([m(n+s) - n(m +rW<P(m+rl,(n+sl/2 - [m(n -s) -n(m+rW<P(m+rl,(n-sl/2

- [m(s-n) +n(m+rW<P(m+rl,(s-nl/2 - [m(n+s) -n(m-rW<P(m-rl,(n+sl/2

+ [m(n-s) -n(m -r)p<P(m-rl,(n-sl/2 + [m(s-n) +n(m -rW<P(m-rl,(s-nl/2

- [m(n+s) +n(r-mW<P(r-ml,(n+sl/2 + [m(n-s) +n(r-mW<P(r-ml,(n-sl/2

+[m(s-n)-n(r-mW<P(r-ml,(s-nl/2} =0, r,s= 1,2,3, ... , (9)

where a prime on I: indicates that the summation of m and n are taken only when m± r or
n ±s is odd. <Ppq are zero when p < °or q < 0, and the following non-dimensional parameters
are introduced:

(10)

where the parameters y and ware used to express the applied loading ratio of unequal
bending moments and shearing force, respectively. (1x2 is the extreme fiber stress at x = a.
Equation (9) results in a set of third-order simultaneous algebraic equations of bmn , and the
Newton-Raphson method is employed to solve it. Substitution of the obtained bmns into
eqn (5b) yields the out-of-plane deflection in the post-buckling state.

2.2. Snap-through phenomena beyondprimary buckling
A simply-supported rectangular plate subjected to only a pure bending moment is

analysed here, i.e. AI = A2 and A3 = °in eqn (10). Young's modulus E and Poisson's ratio
v are 206 GN m- 2 and 0.3, respectively. The out-of-plane deflections are observed at the
four points as indicated in Fig. I(b) so as to pick up the higher-order modes ofdeformation.

In order to check the truncation error of the series evaluation, the secondary buckling
moments are compared with the solutions by Richardson's (h 2

, h4)-extrapolation formula
[e.g. Salvadori (1951), Salvadori and Baron (1961), and Mikami and Yonezawa (1975)].
These results are shown in Fig. 2 and indicate that the infinite series can be truncated at m,
n = 6 in the present analysis. In the same figure, another result to be used in Section 3 is

30'~-r--.--r--....,..-~--r---~--,

secondary buckling moment
pure bending, wolt=O.O

a =0.5, 2 c. & 2 s.s.
bifurcation type

a =0.9, 4 s.s.
snap-through type

estimated value by Richardson's
(h2,h4)-extrapolation formula

-1 OL.....,3~--t4-~5:-------,6!<--7=---"*8---l

Truncated number for m and n of bm•

Fig. 2. Accuracy check of analysis with respect to the secondary buckling moment.
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curve CD
4 s.s.

o a:O.8
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out-oi-plane deflection wit

Fig. 3. Typical post-buckling behavior ofa simply supported plate under pure bending; aspect ratio
C( =0.8.

also shown by open circles within 5% error for the boundary condition of two opposite
sides clamped and the other two sides simply supported.

Figure 3 shows a typical post-buckling behavior in the case of aspect ratio (J. 0.8.
The load-deflection curves at the point (0.35a, 0.70b) are plotted for different equilibrium
states with respect to the principal mode m. In the same figure, the out-of-plane deformed
configurations are shown at several characteristic points.

In this analysis, all equilibrium paths are obtained when the iterative calculation has
converged regardless of the stability of that configuration. In order to check the stability,
the sign of eigenvalues of the Jacobian matrix in the Newton-Raphson procedure must be
examined [see for example Thompson and Hunt (1973,1984) and Britvec (1973)]. Namely,
the stable path is identified only when the Jacobian matrix is positive definite. Stable paths
are drawn by solid lines, while broken lines represent the unstable ones. A dashed-and
dotted line indicates the abrupt change of equilibrium paths.

After reaching the primary buckling moment at point A, the out-of-plane deformation
gradually begins to grow in the principal mode of m = 1, and other minor modes ofm = 3,
5 also develop as the applied moment increases. The direction of out-of-plane deflection
increment reverses at point B, and the snap-through phenomenon occurs from the point C
to D. Here, the type of instability is determined phenomenally to be the snap-through as
shown in the uniformly compressed plate [e.g. Nakamura and Uetani (1979)] or the shallow
arch problems. At point C, the equilibrium path also jumps into another unstable one
indicated by a broken line in the figure, but it does not continue smoothly from the preceding
stable path. Consequently, the point C is a limit point in the same manner as the instability
of the shallow arches or some of shell structures. It must be noticed that two symmetrical
equilibrium paths of opposite sign surely exist after the snap-through phenomenon, but
this figure includes only one of them.

The point D lies exactly on the path of principal and single mode of m = 3 (curve
FDE). This equilibrium path of m = 3 is stable only in the range above the point F. We
may expect that an unstable path surely exists between the point C and F by the analogy
with the shallow arch. This path may be obtained by using the displacement-control or arc
length method, but our analytical method can not employ these techniques, and we cannot
trace it.

Although another path of principal mode m = 2 also exists and is stable above the
point G, this mode does not participate in the instability phenomenon from the path of
m = 1 in the case of (J. = 0.8. As a result, the possible equilibrium path can take only the
course of OABC ..... bE.

lt is found that the mechanism of the snap-through phenomena can be interpreted as
a mode change from m = 1 to m = 3 in the deformed configuration. In other words, the
strain energy stored in the deformed plate of the mode m = 3 becomes smaller at the point
D than that of m = 1 at the snap-through point C.
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Fig. 4. Relationships between the snap-through secondary buckling moment and aspect ratio ex
under simply-supported condition; broken lines are the primary critical moments obtained by the

linear analysis.

The relationships between the aspect ratio IX ofa panel and the secondary snap-through
buckling moment are summarized in Fig. 4. This figure also includes the variation of the
primary buckling moments which are obtained by the linear buckling analysis and are
expressed by the broken lines. The secondary buckling moments indicated by solid lines
become smaller and closer to the loading level of the primary ones near the conjunction
points of the two adjacent primary buckling curves. This suggests that the secondary
instability phenomenon is likely to occur in the practical situations of low loading level.
However, these secondary buckling moments will never coincide with the primary buckling
ones at the conjunction points of the primary buckling curves because of the effect of finite
deflection prior to the buckling.

The variation of secondary buckling moment can be classified into three regions in the
limited range of this analysis, and there will be other similar phenomena as the aspect ratio
increases. While in the range of IX ~ 0.98 the secondary instability yields the mode change
from m = 1 to 3, the change of mode from m = 2 to 3 occurs in the range of0.98 < IX ~ 1.65.
Moreover in the latter case, the region is separated into two parts at IX = 1.44. This is
because the composition of higher buckled mode is slightly different in these two parts, but
the tendency ofdeformed configuration is almost the same. In the higher range of IX > 1.65,
the mode of the secondary instability changes from m = 3 to 5.

2.3. Effect of initial deflection
Figure 5(a) shows the post-buckling paths for a plate of IX = 0.8 which has the initial

deflection mode of a11 with variable magnitude of 0 ~ a 11 ~ 1.0. The number of n is fixed
to unity for the sake of simplicity. The dashed line shows a stable fundamental path with

150150

1100

co a21=

curve CD an= i 50 100.5
4 s.s. 1.0 e 0.3
a =0.8 0.5 6. 0.1

wo: m=l, 0?i3 (a) (b) a =0.8
n=l wo: m=2, n=l

'1.2 -1 2 3 4 '1.4 -3 -2 -1 0 1 2 3 4
out-oi-plane deflection (w+wo)/t out-of-plane deflection (w+wo)/t

Fig. 5. Effect ofinitial deflection on a simply supported plate ofaspect ratio ex = 0.8: (a) imperfection
mode of all; (b) a2'.
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no imperfections. The larger the amplitude of initial deflection a II becomes, the slightly
higher the secondary buckling moment becomes. This result agrees with the report by Fujii
and Ohmura (1989) that the numerically unstable load becomes higher as the curvature of
a curved girder panel is larger.

The results become completely different when the initial deflection mode of a21 is
chosen as in Fig. 5(b). This imperfection mode yields the governing effect on the following
equilibrium paths to lead the stable and monotonical increasing behavior in most cases,
but it depends on the magnitude of the a21 mode. Especially, when the initial deflection is
very small such as a21 = 0.05, bifurcation occurs slightly after the initial buckling moment
of m = I, and the post-buckling path becomes similar to those with initial deflection mode
of all as shown in Fig. 5(a). Although the figure is not shown, the initial mode of a31 has
a similar stabilizing effect on the bifurcation phenomena as the imperfection mode of a21'

Another equilibrium path is also recognized in the case of a31 = 0.1 which is extensively
affected by the mode of m = I.

3. INSTABILITY OF A RECTANGULAR PLATE CLAMPED AT TWO OPPOSITE SIDES AND
SIMPLY SUPPORTED ALONG THE OTHER TWO SIDES

3.1. Fundamental equation
The out-of-plane deflections are assumed to be given by the same shape function as

those used by Moriwaki and Nara (1989) as

00 co • (m1tx){ [(n-I)1tY] [(n+ 1)1tY]}
WO = t m~1 n~1 amn SIn -a- cos b -cos b '

~ ~ b . (m1tx){ [(n-l)1tY] [(n+ 1)1tY]}w = t L. L. mn sm -- cos b - cos b .
m= I n= 1 a

In this case, the general expression of F(x, y) is chosen as

00 co (2P1tX) (2Q1tY)F(x,Y) = Fo(x,y)+Et
2
p~Oq~O <Ppq cos -;;- cos -b- .

(1Ia)

(lIb)

(12)

Substituting eqns (II) and (12) into eqn (Ib), we obtain the explicit expression for <Ppq as

00 ro 8[(2p) 2 +1X2(2q)2]2 OC) co 00 00

L L 2 <ppqCA2p)Cy(2q) = L L L L (amnbij+bmAj
p~Oq~O IX m= I n~ I i= Ij= I

+bmnbjj )[ - ([m(j+ I) - i(n-1W + [m(j-I) -i(n+ l)F}CAm + i)Cv(n +)
+ [m(j+ I)-i(n+ l)FCAm+i)Cy(n+)+2)+[m(j-I) i(n-IWCx(m+i)Cy{n+)-2)

+ ([m(j-I)+i(n-IW+[m(j+ I)+i(n+ IW}CAm+i)Cy(n-)

- [m(j-I)+i(n+ IWCAm+i)Cy(n-j+2)- [m(j+ 1)+i(n-IWCAm+i)Cy(n-j-2)

+ {[m(j+ I) +i(n-lW + [m(j-I) +i(n+ lW}CAm-i)Cy{n+)

-[m(j+ I)+i(n+ IWCAm-i)Cy{n+j+2)-[m(j-l)+i(n-l)FCAm-i)Cy{n+)-2)

- ([m(j-I)-i(n-IW+[m(j+ I) i(n+ l)F}CAm-i)Cy(n-j)

+[m(j-l)-i(n+ IWCAm-i)Cy(n-j+2)+[m(j+ I) i(n-lWCAm-i)Cy(n-j-2)],

(13)

where
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[
( •)1tx] [( •)1tY]

CA·) == cos -a- and Cy(·) == cos -b- .

Similar to eqn (8), Galerkin's method is employed to solve eqn (1a) in the form
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fa fb{v4w_~[;YF02(w+wo) + o2Fo2(w+wo) -2 o2F 02(W+WO)]}
Jo Jo D oy2 ox2 ox2 oy2 ox oy ox oy

.sin (':x) [Cy(s-l)-Cy(s+l)] dxdy= 0, r,s= 1,2,3, .... (14)

By substituting eqns (11) and (12) into eqn (14) and integrating it, we obtain the fun
damental equations in the same manner as eqn (9). This also results in a set of third-order
simultaneous algebraic equations of bmn .

3.2. Bifurcation phenomena beyond primary buckling
Figure 6(a) shows the post-buckling path of a panel subjected to pure bending in the

case of (X = 0.5 after the primary buckling with mode m = 1. This value of the aspect ratio
is chosen so that the number of the primary buckling mode becomes almost the same as
that of the simply-supported case with (X = 0.8. The encircled numerals indicate the obser
vation points of out-of-plane deflection in Fig. l(b). The stable equilibrium path of which
configuration is composed of principal mode m = 1 with other minor modes 3, 5 starts at
the primary bifurcation point A and goes up gradually to point C. This equilibrium path
suddenly becomes unstable just above this point C and bifurcates to another stable path.
After the instability occurs, all the harmonics of the bmns contribute to the deformation of
a plate, but the principal mode remains m = 1, and the rate of these contributions becomes
smaller as the order of the mode becomes higher. The symmetrical deformed configuration
(point C) before the bifurcation changes into the asymmetrical ones (point D) after the
bifurcation.

Figure 6(b) shows the case of (X = 0.8 in which the primary buckling mode is m = 2.
In the post-buckling range, the principal mode ofm = 2 and another minor mode ofm = 6
also develop before the instability point C is reached. Although all the components of the
bmns contribute to the deformation after the instability point, these contributions are in
inverse proportion to the order of the mode, and the principal mode of m = 2 is still
dominant.

~ 100
c:
OJ
E
o
E
eo

~ 50 A
OJ

.0

2
::I
0..

(a)

o

E

I

3

~100

I
tlll150

[

@ @ CD
all modes E

D
C

(b)
2c. & 18.s., a =0.8, w.,lt=O.O

-1 0 1 2
out-of-plane deflection wit

3

Fig. 6. Post-buckling behavior of a plate clamped at two opposite sides and simply supported along
the other two sides under pure bending: (a) aspect ratio IX = 0.5; (b) IX = 0.8.
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opposite 2 sides clamped
& other 2 sides s.s. condition

all n=l~ 150

5
g 100
E

.~
~ 50
::l
.0

m=l

0.62

m=2

1.07

m=3

oL..-..L..--'---'-----J.J----'_L..-..I..---"-..L.1-----'-----'---'

0.2 0.4 0.6 0.8 1 1.2 1.4
aspect ratio a

Fig. 7. Relationships between the secondary bifurcation moment and aspect ratio IX under two
opposite sides clamped and the other two sides simply supported condition.

The relationships between the aspect ratio Q( and the secondary buckling moment are
summarized in Fig. 7 together with the plot of primary buckling loads which are obtained
by the linear buckling analysis using the same shape function as eqn (lIb). The variation
of secondary buckling curve can be classified into three regions of Q( ~ 0.62,0.62 < Q( ~ 1.07
and 1.07 < Q( in the limited range of this analysis. After reaching the instability point, all
the harmonics of the bmns arise in the out-of-plane deformation, but the primary buckling
mode remains.

The secondary buckling occurs almost at the same level as the primary buckling load
when the aspect ratio approaches the conjunction points of the primary buckling curves at
which the mode of primary buckling changes to the higher one. Therefore, this kind of
secondary buckling is most likely to happen in the practical situations.

3.3. Effect of initial deflection
Figure 8(a) shows the post-buckling behavior for a panel of Q( = 0.5 when the initial

deflection of all is given with variable magnitude. The number of n is also fixed at unity
for the sake of simplicity. The dashed line shows a stable fundamental path with .no
imperfections. Since the initial deflection mode of a I I coincides with the primary buckling
mode, the primary buckling does not happen, but the secondary buckling occurs at a higher
loading level. The mixed deformation modes ofm = 1, 3and 5develop into all the harmonics
of the bmns after reaching the bifurcation point, while the principal mode of m = 1 still
remains. The amplitude of the initial deflection serves to increase the secondary buckling
moment as has been observed in the case of the simply-supported boundary condition.
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Fig. 9. Effect of initial deflection on a plate ofaspect ratio IX = 0.8 under two opposite sides clamped
and the other two sides simply supported condition: (a) imperfection mode of a I J ; (b) 021'

An interesting phenomenon is observed in Fig. 8(b) where the initial deflection mode
is aZI' The deformation prior to the bifurcation is composed of the principal mode m = 2
with minor mode m = 6, and the loading level of critical moments is strongly affected by
the magnitude of aZI and another fundamental path of mode m = 2 with no imperfections.
However, this fundamental path itself is unstable as shown by a broken line, and thus the
stable equilibrium paths other than the mode of m = 1 or 2 appear. The configuration of
a plate is composed of all the modes mixed above the bifurcation load, but the principal
mode remains m = 2.

The results of IX = 0.8 are shown in Fig. 9, where the primary buckling mode is m = 2.
If the initial deflection mode all is given, the instability phenomenon of bifurcation type
happens at almost the same loading level as the primary buckling and is shown in Fig. 9(a).
Firstly, the out-of-plane deformation is composed of the symmetric modes of m = 1,3 and
5, and is similar to that of a sub-panel of the shallow barrel subjected to pure bending
moment. In other words, Fig. 9(a) represents the simulation of a non-linear behavior of a
curved panel with the mode of m = 1 and its bifurcation phenomena. No buckling occurs
at higher loading levels as the secondary instability appears after the primary bifurcation.

Other load-deflection curves are shown in Fig. 9(b) when the initial deflection mode is
aZI' Similar to the case shown in Fig. 8(a), the primary buckling vanishes but the buckling
occurs at the same or higher loading level as the secondary bifurcation point of the perfect
case.

As described in this section, the instability phenomena of a plate clamped at two
opposite sides and simply supported along the other two sides are quite complex and depend
on not only the magnitude and mode of the initial deflection but also the shape of the panel.

4. INSTABILITY PHENOMENA UNDER. UNEQUAL BENDING AND SHEAR

The type of loading also plays an importa~t role on the buckling phenomena, and the
effect of combined loading of shearing forces and bending moments on the secondary
buckling is examined here. Figure lO(a) shows a typical example when a simply-supported
and perfect plate of IX = 0.8 is subjected to unequal bending and shear, where the shearing
force ratio is fixed as w = 0.1 and the ratio of the unequal moments y is varied. When y is
small, namely when the extent of inequality of the bending moments becomes relatively
large and thereby the effect of shearing force becomes preferable to that of the bending
moments, the snap-through phenomenon is clearly recognized. Another example of IX = 0.75
and w = 0.133 can be found in Fig. 6 of the study by Nakazawa et al. (1991).

Figure lOeb) shows a similar result of a rectangular plate clamped at two opposite
sides and simply supported along the other two sides in the case of IX = 0.5 and w = 0.1.
The post-buckling paths show two different tendencies depending on the value of y, and
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Fig. 10. Post-buckling behavior ofa plate under unequal bending and shear: (a) aspect ratio IX = 0.8,
(J) = 0.1 under simply supported condition ; (b) IX = 0.5, (J) = 0.1 under two opposite sides clamped

and the other two sides simply supported condition.

the snap-through from a montonically increasing path to another one occurs in the inter
mediate case of)' = 0.3.

5. CONCLUSION

(1) A simply-supported plate exhibits the secondary buckling of the snap-through type
when subjected to pure bending, and the mode change of deformed configuration can be
classified into three regions in the limited range of this analysis; i.e. from m = I to 3 in the
aspect ratio 0( ~ 0.98, m = 2 to 3 in 0.98 < 0( ~ 1.65 and m = 3 to 5 in 0( > 1.65. Other
similar phenomena will also be obtained as the aspect ratio increases.

(2) When a rectangular plate clamped at two opposite sides and simply supported
along the other two sides is subjected to pure bending, the bifurcation-type instability
occurs, and the symmetrically deformed configuration changes to the asymmetrical one.
After reaching the instability point, all the harmonics of the bmns contribute to the defor
mation of a plate in which the rate of these contributions becomes smaller as the order of
the mode becomes higher, but the same principal mode as the primary buckling one remains.

(3) The secondary instability is observed at a relatively lower loading level when the
aspect ratio lies near the intersection point of the primary buckling curves, especially in the
case of a plate with two opposite sides clamped and the other two sides simply supported.
Therefore, this secondary instability phenomenon can be likely to occur even in the practical
situations of low loading level.

(4) The effect of initial deflection on the secondary buckling is somewhat complex. In
the simply-supported case, the existence of the initial deflection of the mode a I I slightly
increases the secondary buckling load. On the other hand, the higher-order modes of
imperfection a21 or a31 give a stabilizing effect on this secondary instability phenomenon
and lead to the monotonically increasing paths except when the imperfection is very small.
If two opposite sides are clamped and the other two sides are simply supported, the
bifurcation happens even when the initial imperfection exists, and the buckling load level
depends on the shape of the panel and the mode of imperfection.

(5) The effect ofcombined loading also yields another secondary instability and results
the mode change of deformed configuration. Some numerical examples exhibit that the
secondary buckling phenomenon also happens in the case of combined loading of unequal
bending moments and shearing forces.
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